Nucleic acids potentiate Factor VII-activating protease (FSAP)-mediated cleavage of platelet-derived growth factor-BB and inhibition of vascular smooth muscle cell proliferation.

نویسندگان

  • Aya Shibamiya
  • Lars Muhl
  • Susanne Tannert-Otto
  • Klaus T Preissner
  • Sandip M Kanse
چکیده

FSAP (Factor VII-activating protease) can cleave and inactivate PDGF-BB (platelet-derived growth factor-BB) and thereby inhibits VSMC (vascular smooth-muscle cell) proliferation. The auto-activation of FSAP is facilitated by negatively charged polyanions such as heparin, dextransulfate or extracellular ribonucleic acids. Since auto-activation is essential for the anti-proliferative function of FSAP, the influence of nucleic acids as cofactors for the FSAP-mediated inhibition of PDGF-BB was investigated. Natural or artificial RNA was an effective cofactor for FSAP mediated PDGF-BB degradation, whereas the effect of DNA was weak. RNA-induced cleavage of PDGF-BB was inhibited by serine protease inhibitors. The pattern of PDGF-BB cleavage was identical with either heparin or RNA as a cofactor. One of the cleavage sites in PDGF-BB was at the positions 160-162 (R160KK162), which is an important region for receptor binding and activation. In VSMCs, PDGF-BB-stimulated DNA synthesis was inhibited by FSAP in the presence of RNA. RNA was more effective than DNA and the cofactor activity of RNA was neutralized after pretreatment with RNase. FSAP binding to RNA protected the nucleic acid from degradation by RNase. These data are relevant to situations where extracellular nucleic acids released from necrotic or apoptotic cells could activate local FSAP, leading to inhibition of PDGF-BB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factor VII-activating protease (FSAP): vascular functions and role in atherosclerosis.

FSAP is a plasma serine protease for which a potential role in the regulation of coagulation and fibrinolysis is postulated, based on its property to activate factor VII (FVII) as well as pro-urokinase (uPA). In clinical studies, the G534E single nucleotide polymorphism (Marburg I) of FSAP has been linked to late complications of atherothrombosis and is associated with a low proteolytic activit...

متن کامل

The G534E polymorphism of the gene encoding the factor VII–activating protease is associated with cardiovascular risk due to increased neointima formation

The G534E polymorphism (Marburg I [MI]) of factor VII-activating protease (FSAP) is associated with carotid stenosis and cardiovascular disease. We have previously demonstrated that FSAP is present in atherosclerotic plaques and it is a potent inhibitor of vascular smooth muscle proliferation and migration in vitro. The effect of wild-type (WT)- and MI-FSAP on neointima formation in the mouse f...

متن کامل

Extracellular RNA is a natural cofactor for the (auto-)activation of Factor VII-activating protease (FSAP).

FSAP (Factor VII-activating protease) is a new plasma-derived serine protease with putative dual functions in haemostasis, including activation of coagulation Factor VII and generation of urinary-type plasminogen activator (urokinase). The (auto-)activation of FSAP is facilitated by polyanionic glycosaminoglycans, such as heparin or dextran sulphate, whereas calcium ions stabilize the active fo...

متن کامل

Factor VII-activating protease promotes the proteolysis and inhibition of tissue factor pathway inhibitor.

OBJECTIVE Factor VII-activating protease (FSAP) activates both factor VII and pro-urokinase and inhibits platelet-derived growth factor-BB, thus regulating hemostasis- and remodeling-associated processes in the vasculature. A genetic variant of FSAP (Marburg I polymorphism) results in low enzymatic activity and is associated with an enhanced risk of carotid stenosis and stroke. We postulate tha...

متن کامل

A positively charged cluster in the epidermal growth factor-like domain of Factor VII-activating protease (FSAP) is essential for polyanion binding.

FSAP (Factor VII-activating protease) is a novel plasma-derived serine protease that regulates haemostasis as well as vascular cell proliferation. FSAP undergoes autoactivation in the presence of polyanionic macromolecules such as heparin and RNA. Competition experiments suggest that RNA and heparin bind to the same or overlapping interaction sites. A proteolysis approach, where FSAP was hydrol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 404 1  شماره 

صفحات  -

تاریخ انتشار 2007